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Abstract Cell intermediary metabolism and energy pro-
duction succeeds by means of mitochondria, whose activity is
in relation to transmembrane potential and/or free radical
production. Adenosine triphosphate (ATP)-dependent potassi-
um channels (KATP) in several cell types have shown to
couple cell metabolism to membrane potential and ATP
production. In this study, we explore whether oxygen
consumption in isolated skeletal-muscle mitochondria differs
in the presence of distinct respiration substrates and whether
these changes are affected by KATP-channel inhibitors such as
glibenclamide, 5-Hydroxydecanoate (5-HD), and KATP chan-
nel activators (pinacidil and diazoxide). Results demonstrate a
concentration-dependent diminution of respiration rate by
glibenclamide (0.5–20 μM), pinacidil (1–50 μM), and
diazoxide (50–200 μM), but no significant differences were
found when the selective mitochondrial KATP-channel inhib-

itor (5-HD, 10–500 μM) was used. These results suggest that
these KATP-channel agonists and antagonists exert an effect on
mitochondrial respiration and that they could be acting on
mito-KATP or other respiratory-chain components.
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Introduction

Mitochondria are essential organelles for cell intermediary
metabolism and energy generation via cell respiration. In
isolated mitochondria, the respiratory chain consists of a
series of electron carriers, the majority of which are integral
membrane proteins, capable of accepting and donating
electrons (Nicholls and Ferguson 2002). During oxidative
phosphorylation, the electrons are conducted through
mitochondrial respiratory complexes, and a proton gradient
establishes across the inner mitochondria membrane, as the
energy source for ATP production succeeds according to
the cell’s energetic demand.

In the phosphorylation pathway, several points can be
pharmacologically manageable via available agents that block
respiration at each one of the respiratory chain complexes;
some others inhibit ATP synthase, while still others, such as
protonophores, short-circuit the electrochemical potential for
protons (primarily expressed as a mitochondrial transmem-
brane potential) and uncouple respiration from phosphoryla-
tion. Consequently, systematic dissection of mitochondrial
function under several physiological conditions and its
respective measurements, provide us information on the
behavior of this organelle regarding its trans-membrane
potential and redox state (Duchen 1999).
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The rate of Adenosine triphosphate/Adenosine biphos-
phate (ATP/ADP) production also regulates the activity of
sarcolemmal and mitochondrial potassium permeability
through KATP channels, because ATP production and
metabolism have been related with membrane and redox
potential, and to free-radical production (O’Rourke et al.
1994; Hoppeler et al. 2003). Plasmatic membrane KATP

channels couple cell metabolism to membrane excitability
(Tricarico et al. 2000; O’Rourke 2000; Debska et al. 2002;
Das et al. 2003) and they act as a target for sulphonylureas
(Aguilar-Bryan et al. 1995). In mitochondria, KATP chan-
nels (mito-KATP) are involved in the coupling of redox
potential (O’Rourke et al. 1994) and/or in free-radical
release (Hoppeler et al. 2003).

On the other side, during muscle contraction, myofibrils
consume ATP according to energy demand, but on
prolonged exercise, the oxygen demands increase (Brooks
et al. 1999) and skeletal-muscle fibers exhibit a progressive
decline of performance that largely recovers after a resting
time, in a reversible phenomena known as fatigue (Allen et
al. 2008; Allen 2009). In these physiological phenomena in
the muscle cell, the oxygen concentration decays about
3.1% with respect to the resting condition. Then, mito-KATP

could play an acute role acting in response to hypoxia
(Hoppeler et al. 2003). It has been shown that tension
development in muscle cells depends on the partial oxygen
pressure (Eu et al. 2003) and it might depends on ATP
production via modulation of excitation-contraction cou-
pling. In this step, the surrounding mitochondria of the
muscle cells are responsible for generating ATP to supply
energy demands, exhibiting in their internal membrane
permeability transitions (Green and Reed 1998), redox
oscillations (O’Rourke et al. 1994), and response to
ischemia (Vander Heide et al. 1996).

KATP channels show structural and pharmacological
differences according to their localization, it is, whether
they are in the plasmatic membrane or inner mitochondrial
membrane. Drugs such as pinacidil appear to activate both
types of KATP channels, but glibenclamide can inhibit them
(Paucek et al. 1992; Garlid et al. 1997).

An electrophoretic K+ influx occurs in two ways: via
simple diffusion or through KATP channels. Activation of
mito-KATP will cause an increase in mitochondrial matrix
volume, which in turn could activate the respiratory chain
(Halestrap 1989; Grover and Garlid 2000; O’Rourke 2000;
Debska et al. 2002; Das et al. 2003). A K+ cycle was
explored by Garlid and Paucek (2001), who demonstrated
that K+ is driven into the matrix by the membrane potential,
which is generated by proton-pumping of the electron
transport system. Thus, excessive K+ is removed by the
regulated K+/H+ antiporter. The regulation of the K+ fluxes
is the manner that volume regulates in the face of the cell’s
changing its energy requirements (Mironova et al. 2004). In

addition, the transitory permeability pore could be pharma-
cologically modulated as suggested by Dahlem et al.
(2006). Its activation could cause functional changes such
as changes in intracellular Ca2+ concentration and mito-
chondrial potential (Nicholls 2005), which contributes to
regulate ATP production; for example, induced mitochon-
drial uncoupling could induce rapid activation of the
potassium currents carried through KATP channels in the
presence of pinacidil (Sasaki et al. 2001).

On the other hand, the action of a specific mito-KATP-
channel inhibitor, such as 5-Hydroxydecanoate (5-HD) or
specific activators such as diazoxide (Garlid et al. 1997;
Sato et al. 1998) could aid in establishing differences in
mitochondrial responses to several experimental conditions.
Thus, the aim of this work was to explore the effects of
specific KATP-channel activators, such as pinacidil and
diazoxide, and the action of inhibitors such as glibencla-
mide and 5-HD on oxygen consumption in isolated
mitochondria derived from chicken skeletal muscle.

Materials and methods

Isolated mitochondria from pectoralis muscle of 3-week-old
Arbor Acres chickens were used to explore oxygen
consumption in the absence or presence of drugs acting
on KATP channels. The chicks were euthanized prior to
dissection of the pectoralis muscle (Huerta and Stefani
1981). Animal maintenance procedures were managed
according to Mexican Regulations for Use and Animal
Care (NOM-062-ZOO-1999), and the Ethics Committee at
our Institution approved the protocol.

Solutions

Ginsborg saline (modified from Huerta and Stefani 1981) was
employed for muscle dissection. Its composition (in mM)
was as follows: NaCl, 167; KCl, 5; MgCl2, 2; CaCl2, 5;
mannitol, 2 g/L. pH was adjusted to 7.4 with Imidazol-Cl
(2 mM). For mitochondria isolation, solutions 1 and 2 were
used: Solution-1 was (in mM): Sucrose, 100; Trizma base,
50; KCl, 50; EDTA, 5. Solution-2 was (in mM): Sucrose,
250: EGTA 1; Trizma base, 20. pH was adjusted to 7.4 with
HCl (Barre et al. 1989). Oximetry solution (in mM) was the
following: KCl, 120; KH2PO4, 5; Hepes, 3; EGTA, 1;
MgCl2, 1, assuring a pH of 7.4 with Trizma base (Barre et al.
1989).

Skeletal-muscle mitochondria isolation

After dissection of chicken´s pectoralis muscle, the latter
was weighed and immersed in Ginsborg saline. Mitochon-
dria were isolated by differential centrifugation in a Percoll
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gradient as described by Thakar and Hassan (1988) and
Sims (1990). In brief, Nagarase (1 μg/mg muscle) was
added to extract inter-myofibrillar mitochondria (Talbot et
al. 2003, 2004); pre-cooling of the muscle at 4 °C in
solution-1 was required, as well as muscle sectioning and
homogenizing to ensure enzyme action. The homogenate
was centrifuged and placed in a discontinuous Percoll
gradient (15, 23, and 40%) at 30,700 g for 15 min at 4 °C in
a Beckman J6 MY centrifuge. Mitochondria were isolated,
diluted 1:4, centrifuged again, and washed at 16,700 g in
isolation medium to which 0.5% of bovine serum albumin
was added, followed by a final centrifugation at 6,900 g for
10 min (Calderón-Cortés et al. 2008). The pellet containing
mitochondria was resuspended in solution-2 and the
mitochondrial protein concentration was measured by the
Biuret method (Gornall et al. 1949).

Measurement of oxygen consumption

Once mitochondria were obtained and protein concentration
was determined, 1 mg/ml of protein was placed into the
oxymeter chamber to measure oxygen consumption polar-
ographically with a Clark-type oxygen sensor placed in a
2-ml closed chamber at 30 °C under continuous stirring in
an air-saturated phosphate buffer (50 mM KH2PO4).
Addition of rotenone (5 µM) and the substrate for complex
II, succinate (Hanley et al. 2002), as well as ADP
(100 mM), was effected in order to induce state 3 of
mitochondrial respiration, in addition to glutamate-malate
for complex I (10 mM). A standardized scale at 100% was
utilized and dissolved oxygen 800 nat O2/mL and changes
in oxygen consumption were monitored under different
experimental protocols.

To explore the effects of the experimental drugs on
oxygen consumption, the following range of concentrations
was employed: glibenclamide (0.5, 1, 5, 10, and 20 μM);
pinacidil (1, 5, 10, and 50 μM); 5-HD (100 and 500 μM),
and diazoxide (50 and 200 μM). All of these were diluted
in dimethyl sulfoxide (glibenclamide), water (pinacidil and
5-HD), or NaOH 0.1 M (diazoxide) and prepared as stock
solutions. All experiments were performed at room tem-
perature (20–22 °C).

Data analysis

Concentration-effect curves were obtained using the
appropriate software (Origin ver. 6.0, Origin Lab. Corp.,
Northampton, MA, USA) and data were adjusted to the

Hill equation I ¼ Imax= 1þ EC50=xð Þh
� �h i

. Results are

reported as mean ± Standard error of the mean (SEM).
Statistical differences of the data were determined with the
Student t test and were considered statistically significant
at p<0.05

Results

Effect of glibenclamide on mitochondrial oxygen
consumption

We explored the effects of the KATP channel blocker
Glibenclamide on mitochondrial oxygen consumption in
the state-3 from mitochondrial respiration. Oxygen con-
sumption measurements exhibited a dose-dependent inhibi-
tion of mitochondrial respiration by glibenclamide.
Inhibition of respiration was 40% in the presence of
glibenclamide (0.5 µM); further concentrations (1, 5, 10,
and 20 µM) inhibited mitochondrial respiration by up to
95% in state 3 (Fig. 1a).

Figure 1b shows the dose-response curve for glibencla-
mide respiration inhibition. Glibenclamide inhibition`s
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Fig. 1 a Effects of glibenclamide on oxygen consumption in state-3
respiration in isolated mitochondria. Oxygen consumption in nat of
O2/min.mg for Morelia City was 74.27±5.4. Asterisks represent
significant values (p<0.05) (n=4). b Dose-response curve fitted to
Hill equation for glibenclamide. EC50 is 0.989±0.06 µM (n=4)
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threshold was 0.5 µM, and maximum effect reached at
20 µM. Hill equation showed an EC50 of 0.989±0.06 µM;
Imax calculated value was 102.08±2.48 µM, and Hill
coefficient was 1.16±0.14. However, when 5-HD was
utilized at concentrations of 100 and 500 µM, it exerted
no effect on mitochondrial respiration (data not shown).

Effect of pinacidil on mitochondrial oxygen consumption

To explore the action of pinacidil on mitochondrial oxygen
consumption, succinate was used as substrate for mito-
chondrial respiration, but pinacidil had no effect on state-3
respiration in comparison to control (data not shown).
However, when glutamate-malate was employed as sub-
strate for complex I in all explored concentrations of
pinacidil (1, 5, 10, and 50 µM), inhibited oxygen
consumption (Fig. 2a). Fifty percent inhibition was

obtained when pinacidil was 5 µM, while the higher
inhibition (20%) of oxygen consumption was obtained with
50 µM pinacidil. However, pinacidil was negligibly
effective on respiration inhibition compared with glibencla-
mide. Figure 2b depicts the concentration-response curve
for the inhibition effect of pinacidil. The threshold
concentration of pinacidil to inhibit oxygen consumption
was ca. 1 µM, and the maximal effect was observed with
50 µM. Data adjusted to Hill equation showed an EC50 for
pinacidil of 3.5±1.14 µM. Imax value was 82.56±8.30 µM,
and Hill coefficient was 0.93±0.19 µM. However, neither
5-HD nor glibenclamide exerted a significant effect on
oxygen consumption when they were applied utilizing
glutamate-malate as substrates for complex I (data not
shown).

Effect of diazoxide on mitochondrial oxygen consumption

To assess whether diazoxide might alter mitochondrial
function, we explored mitochondrial respiration in state 3
(Fig. 3). In Fig. 3a, the effect of diazoxide in the presence of
succinate obtains maximal inhibition achieved with 50 µM
diazoxide (approximately 30%), while with glutamate-malate,
maximal inhibition reached with 100 µM was also 30%
(Fig. 3b).

Discussion

In the present study, we explored oxygen consumption in
isolated mitochondria derived from chicken pectoralis
skeletal muscle in the presence of glibenclamide, pinacidil,
5-HD, and diazoxide (Jaburek et al. 1998) by using
succinate and glutamate-malate as substrates for mitochon-
drial respiration. Simple addition of the drugs produced no
changes in oxygen consumption when succinate was used
as substrate, but when glutamate-malate was added, oxygen
consumption was inhibited. In contrast, when 5-HD was
utilized, it did not show a significant effect on mitochon-
drial oxygen consumption using both of the substrates (data
not shown). In our experiments, glibenclamide diminished
mitochondrial respiration only when mitochondria were
absent from electron transport-chain uncouplers. Regarding
these contrasting results and those reported for heart-
isolated mitochondria, Jaburek et al. (1998) reported that
inhibition of mitochondrial respiration derived from heart
muscle using succinate as substrate in the presence of
glibenclamide is due to a non-specific effect in uncoupled
mitochondria, because glibenclamide is not a selective
blocker for the mitochondrial KATP channel (Beavis et al.
1993).

Although glibenclamide has been explored in KATP

channels, its action in blocking other types of K+ channels,
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Fig. 2 a Effect of pinacidil on oxygen consumption in state-3 respiration
in isolated mitochondria. Oxygen consumption was 107.2±10 O2/min.mg.
Asterisks are values of p<0.05 (n=4). b Dose-response curve fitted to Hill
equation for pinacidil. EC50 was 3.5±1.14 µM (n=4)
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as well as currents carried by TEA+, could explain the non-
specificity of its action (Jaburek et al. 1998). In addition,
the high concentrations employed in several experiments or
lower affinity to respiratory chain enzymes could explain
the scarce specificity (Debeer et al. 1974; Somogyi et al.
1995a, b). In our experiments, the effect of glibenclamide
could be a reflex of diminution in K+ fluxes, which might
not be relative to KATP channels. Although we are unable to
discard this, part of the effect of this drug could be due to
blockade of the mitochondrial KATP channels; additional
research is needed to confirm this, for example, the use of
another technical approach to explore the activity of single
KATP channels (via patch clamp) or direct measurements of
potassium permeability (Hamill et al. 1981) in the presence
of glibenclamide. Binding sites in the sulphonylurea-
receptor protein phase from the KATP channel could have
effects that are dependent on the functional state of the
channel (Schwanstecher et al. 1998).

Regarding the effects found by Jaburek et al. (1998),
we have not observed any effect when 5-HD was utilized,
despite our use of a—range of concentrations similar to
those used by Mironova et al. (2004) to explore the action
of this drug on mito-KATP. Jaburek et al. (1998) argue that
binding of the drug would modify the channel’s confor-
mation, which would occur in vivo, but not in vitro,
when succinate is the substrate employed. However, our
results found with 5-HD are in agreement with those
described for heart mito-KATP (Garlid et al. 1997; Grover
1997). Hanley et al. (2005) showed that 5-HD metabolizes
to 5-hydroxydecanoyl-CoA, which acts as substrate for the
first step of β-oxidation, an action that could explain why
no effect was described when this drug was used in
cardiac preparations.

On the other hand, in previous studies, the use of
pinacidil and succinate as substrate exerted no effects on
oxygen consumption (Hanley et al. 2002) when NADH
(800 µM) was used as substrate for submitochondrial
particles from guinea pig heart, and pinacidil (23–
230 µM) exhibited a concentration-dependent diminution
in oxygen consumption with an EC50 of 90 µM. These
results suggested that pinacidil inhibits complex I (NADH-
ubiquinone oxidoreductase). In our study, we used
glutamate-malate as substrate for complex I, and pinacidil
inhibited oxygen consumption in a concentration-dependent
manner (EC50=3.5±1.14 µM). Our concentration range
utilized for pinacidil was smaller than those previously
reported by Holmuhamedov et al. (1998) and Kowaltowski
et al. (2001), although, a pharmacological effect could be
considered to occur with a dose <50 µM (Holmuhamedov
et al. 1998, 1999), which is higher than that we used, in
which an inhibition of oxygen consumption was obtained
(1 µM) (Fig. 2a). However, part of this effect might be due
to the hydrophobic nature of pinacidil (Kowaltowski et al.
2001).

Additionally, although drugs could activate some com-
plexes of the respiratory chain, they could also affect the
transmembrane potential, and possibly Ca2+ uptake
(Holmuhamedov et al. 1998, 1999), because the mito-
KATP channel regulates mitochondrial volume. In the
absence of ATP, mito-KATP channels are open and
mitochondria uptake K+ from the outside, which passes
through the channel accompanied by water; an effect that
is inhibited by ATP (Holmuhamedov et al. 1999).

Modulation of mito-KATP by ATP is suggested to be a
process that could regulate complete mitochondrial function
and, consequently, energy production, and mitochondria
convert from energy-producing organelles to an energy-
consuming organelles, influencing cell response according
to metabolic demand. In the cardiac myocyte, it has been
shown that this mechanism is activated by dissipating
mitochondrial inner-transmembrane potential, such as takes
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place during mitochondrial permeability transitions
(Duchen 1999), ischemia (Vuorinen et al. 1995), or during
spontaneous redox oscillations (Romashko et al. 1998).

With respect to the effect of diazoxide on oxygen
consumption, some KATP channel openers exert a direct
effect on certain respiratory-chain proteins, such as the
Succinate dehydrogenase enzyme (SDH) (Hanley et al.
2002), that is, SDH is inhibited with 100 μM diazoxide
(Kowaltowski et al. 2001), a dose not much higher than that
required to close mitoKATP channels (30 μM). Ardehali et al.
(2005) showed that mito-KATP is part of the SDH macro-
molecular complex, which modulates channel activity via a
physical interaction, and not by playing a concrete role in the
respiratory chain. Thus, our results are in agreement, because
inhibition of the oxygen consumption succeeds in the
presence of diazoxide (50 μM), a dose that falls within the
limit of effects observed on respiratory chain compounds,
whose existence may represent a direct correlation demon-
strating that these effects are exerted on SHD.

We agree that neither pinacidil, glibenclamide, nor 5-HD
are specific modulators of potassium conductance; their
effects in mitochondria show dependence on the substrate
used, but more research is required to establish via
proteomic or via other studies the identity of KATP-channel
proteins in mitochondria (Suzuki et al. 1997; Zhou et al.
2005). However, to our knowledge, this is the first report
that KATP-channel agonists and antagonists affect oxygen
consumption. Thus, our data suggest that, at least in part,
these agents exert other effects on skeletal-muscle mito-
chondria that are unrelated to their effects on the mito-KATP

channel, which needs to be investigated.
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